Absence of a barrier to backwards rotation of the bacterial flagellar motor demonstrated with optical tweezers.

نویسندگان

  • R M Berry
  • H C Berg
چکیده

A cell of the bacterium Escherichia coli was tethered covalently to a glass coverslip by a single flagellum, and its rotation was stopped by using optical tweezers. The tweezers acted directly on the cell body or indirectly, via a trapped polystyrene bead. The torque generated by the flagellar motor was determined by measuring the displacement of the laser beam on a quadrant photodiode. The coverslip was mounted on a computer-controlled piezo-electric stage that moved the tether point in a circle around the center of the trap so that the speed of rotation of the motor could be varied. The motor generated approximately 4500 pN nm of torque at all angles, regardless of whether it was stalled, allowed to rotate very slowly forwards, or driven very slowly backwards. This argues against models of motor function in which rotation is tightly coupled to proton transit and back-transport of protons is severely limited.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the application of optical tweezers and electro-rotation to study rotational dynamics of flagellar motors

The bacterial flagellar motor is a rotary molecular engine driven by an electrochemical gradient; which turns a helical filament generating the thrust enabling the bacteria to swim. The mechanism of torque generation has been described by different models, each of them predicting a different relationship between speed and torque. In order to rule out the less effective models in favor of more p...

متن کامل

Applying torque to the Escherichia coli flagellar motor using magnetic tweezers

The bacterial flagellar motor of Escherichia coli is a nanoscale rotary engine essential for bacterial propulsion. Studies on the power output of single motors rely on the measurement of motor torque and rotation under external load. Here, we investigate the use of magnetic tweezers, which in principle allow the application and active control of a calibrated load torque, to study single flagell...

متن کامل

Bacterial Chemotaxis in an Optical Trap

An optical trapping technique is implemented to investigate the chemotactic behavior of a marine bacterial strain Vibrio alginolyticus. The technique takes the advantage that the bacterium has only a single polar flagellum, which can rotate either in the counter-clock-wise or clock-wise direction. The two rotation states of the motor can be readily and instantaneously resolved in the optical tr...

متن کامل

The Effects of Stator Compliance, Backs Steps, Temperature, and Clockwise Rotation on the Torque-Speed Curve of Bacterial Flagellar Motor

Rotation of a single bacterial flagellar motor is powered by multiple stators tethered to the cell wall. In a " power-stroke " model the observed independence of the speed at low load on the number of stators is explained by a torque-dependent stepping mechanism independent of the strength of the stator tethering spring. On the other hand, in models that depend solely on the stator spring to ex...

متن کامل

A programmable optical angle clamp for rotary molecular motors.

Optical tweezers are widely used for experimental investigation of linear molecular motors. The rates and force dependence of steps in the mechanochemical cycle of linear motors have been probed giving detailed insight into motor mechanisms. With similar goals in mind for rotary molecular motors we present here an optical trapping system designed as an angle clamp to study the bacterial flagell...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 94 26  شماره 

صفحات  -

تاریخ انتشار 1997